Where there’s flow, there’s life
High Impact Innovation

The NHS Operating Framework 2012 and the NHS Innovation Health & Wealth Review 2011 named ODM as one of six **high impact innovations** and called for the widespread implementation of ODM for fluid management in surgery.

The recently launched Intraoperative Fluid Management Technologies (IOFMT) Adoption Pack from the **NHS National Technology Adoption Centre (NTAC)** – commissioned by the **Department of Health (DH)** – simplifies and facilitates the implementation process. For more information, visit www.ntac.nhs.uk.

In March 2012, **NHS Supply Chain** awarded Deltex Medical a two-year contract to supply the CardioQ-ODM to the NHS.

By complying with the implementation requirements for these high impact innovations by April 2013, NHS organisations pre-qualify for the CQUIN payment scheme, worth **2.5%** of their revenue.

Fluid Management Monitoring Technologies can reduce mortality rates for elective procedures, improve the quality of care for more than 800,000 patients a year, and save the NHS at least £400m annually.

Sir Ian Carruthers, OBE, (NHS Innovation, Health and Wealth Review 2011)
When fluid management really matters, not all cardiac output devices are the same.

Widely proven and suitable for use across the surgical population, oesophageal Doppler monitoring (ODM) using the CardioQ-ODM, is the only minimally invasive therapy to measure blood flow directly in the central circulation.

The clinical benefits of the CardioQ-ODM stem directly from the use of a low-frequency ultrasound signal to measure blood flow directly in the central circulation.

Only Doppler works

Only the CardioQ-ODM has the precision necessary to guide successfully a 10% Stroke Volume Optimisation (SVO) protocol. Its considerable evidence base is testimony to the unique ability of the CardioQ-ODM to recognise and monitor 10% changes in Stroke Volume.

Other cardiac output devices do not have the required precision. Technologies using pressure or bioreactance as a surrogate for flow are confounded by changes in arterial compliance or impedance, regularly reporting changes in the wrong direction. As such, they are not appropriate to guide Stroke Volume Optimisation (SVO) without frequent, expensive, and time consuming recalibration by a more precise technology.

Flow versus Pressure

- During surgery, haemodynamics change frequently.
- Only direct flow measurement can detect such change precisely; surrogates cannot.
- Pulse Pressure Wave Analysis (PPWA) devices measure pressure not flow and are confounded by changes in resistance.

The Enhanced Recovery Partnership fully supports the use of intraoperative fluid management technology to deliver individualised goal-directed fluid therapy. This is recommended in the 2012-13 NHS Operating Framework, in the Innovation, Health and Wealth Review, and in NICE Guideline MTG3.

Only Doppler is recommended

The evidence in support of individually guided fluid management during surgery is centred on the implementation of oesophageal Doppler monitoring (ODM), using the CardioQ-ODM. The device has established an incomparable evidence base that is today acknowledged and endorsed by the National Institute for Health and Clinical Excellence (NICE). The NHS has therefore decided to adopt ODM at pace and scale.

In its 2011 medical technology guidance on the CardioQ-ODM (MTG3), NICE asserts that the technology should be considered for use in patients undergoing major or high-risk surgery or other surgical patients in whom a clinician would consider using invasive cardiovascular monitoring.

Randomised, controlled trials using the CardioQ-ODM have demonstrated that early fluid management intervention will reduce post-operative complications, reduce intensive care admissions, and reduce the length of hospital stay.

To date, more than 500,000 patients have benefited from the use of the CardioQ-ODM, and the NHS National Technology Adoption Centre (NTAC) audit of over 1300 patients reported the benefits of ODM implementation in three hospitals:

- The post-operative stay was reduced by 3½ days and CVC use was reduced by 23%.
- The results also indicate a trend towards a reduction in readmission rates, re-operations and mortality.
- These real-world results replicate those from randomised controlled trials and as such, the technology constitutes a cornerstone of Enhanced Recovery.

Effect of a vasoconstrictor on flow-based and pressure-based cardiac output monitors

The graph to the left (FIGURE 2) illustrates the effect of a vaso-active drug on Systemic Vascular Resistance (SVR).

It demonstrates dramatically the difference between a flow-based technology (CardioQ-ODM) and a pressure-based (PPWA) approach.

This is a real patient event in which a vaso-active drug was administered. Almost immediately after the drug is administered, the pressure-based system (B) records the increased SVR (A) as an increase in flow. However, the unique and direct flow measurement of the CardioQ-ODM (C) shows the true - and opposite - result. The increased SVR causes a small fall in flow as the heart pumps against the increased vascular resistance.

PPWA devices using pressure as a surrogate for flow measurement lack the precision necessary to guide the SVO protocol and often indicate that flow has increased when in fact, the opposite has occurred. The unreliability of the PPWA approach is due to the frequent changes in arterial compliance during the operative period.
Direct flow measurement

Placing a single-use probe in the oesophagus, the CardioQ-ODM monitor uses Doppler ultrasound technology to determine directly a patient’s central vascular blood flow and fluid status during the intraoperative period.

Easy to use and quick to focus, the device generates a low-frequency ultrasound signal, which is highly sensitive to changes in flow and measures them immediately.
When fluid management really matters, think Doppler

References

Mythen MG, Webb AR

Sinclair S, James S, Singer M

Gan TJ, Soppitt A, Maron M, El-Maolim H, Robertson KM
Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anaesthology 2002; 97: 820-826.

Venn R, Steele A, Richardson P, Poloniacki J, Grundy M, Newnam P

Wakeling HG, McFall MR, Jenkins CS, Woods WGA, Miles WFA, Barclay GA, Fleming SC

Noblett SE, Snowden CP, Shenton BK, Horgan AF

Challand C, Struthers R, Sneyd JR, Erasmus PD, Mellor N, Hosie KB, Minno G

Figus A, Wade RG, Oakley S, Ramakrishnan VV

