Clinical Papers for CardioQ-ODM™
The Oesophageal Doppler Monitor
(Compiled April 2009)

10. Webb A. The NHS could save up to £400m a year with some simple measures to cut length of stay. Health Service Journal (HSJ) 2008; January: 26-27

16. Improving surgery (an independent study). Clinical Services Journal. 2007;90-91

18. Drage S, Boyd P. Peri-operative goal-directed haemodynamic therapy - do it, bin it or finally investigate it property? Crit Care 2007; 11(5):170

28. McDonald S, Fernando R, Ashpole K, Columb M. Maternal cardiac output changes after crystalloid or colloid cohydration following spinal anaesthesia for elective caesarean section. *International Journal of Obstetric Anesthesia* 2007; Pages S1-S54:008

31. Roche AM, Gan TJ. Peri-operative goal-directed fluid therapy - perceived or real benefit? *US Surgery* 2007;10-12

36. Windsor A. Improving surgical outcomes, reducing length of stay. *Health Director* 2007;October Issue

41. Dark P. Trans-oesophageal Doppler derived cardiac output: is it valid in clinical practice? *Br J of Int Care* 2006 Spring

46. Hawkes N. Surgical breakthrough could save NHS up to £500m a year. *The Times* 2006, September

49. Horgan A. Safety First. *Health Director*. December 2006

55. Pinsky M. Haemodynamic monitoring in shock and implications for management. 2006

56. Singer M. The FTc is not an accurate marker of left ventricular preload. *Intensive Care Med* 2006; 32 (9):1456-1457

57. Spahn DR, Chassot PG. Fluid restriction for cardiac patients during major noncardiac surgery should be replaced by goal-directed intravascular fluid administration. *Anesth Analg* 2006; 102:344-346

65. Devanand A. Clinical Trial: Continuous hemodynamic monitoring by esophageal Doppler in severe sepsis. 2005

67. English JD, Moppett IK. Feasibility of performing transoesophageal Doppler measurements in awake, unpremedicated, healthy volunteers. 2005

68. Esdaile BA, Raobaikady R. Survey of cardiac output monitoring in intensive care units in England and Wales. 2005

82.	Walker D, Usher S, Hartin J, Adam S, Brandner B, Chieveley-Williams S. Early experiences with the new awake oesophageal Doppler probe. 2005
83.	Williams AB. Enhanced recovery programs for colorectal surgery. 2005
87.	Gresham T. Purchasing decisions to support a change in intraoperative haemodynamic monitoring are evidence-based and could save billions. Hospital Decisions 2004; 1:184-185
89.	Kong RS. Esophageal Doppler monitoring in off-pump cardiac surgery. 2004

95. Gunn S, Harrigan P, Pinsky MR. Ability of arterial pulse contour and esophageal pulsed Doppler measures to estimate rapid changes in left ventricular output. 2003

129. Farrar D, Grocott MPW, Hamilton MA, Mythen MG. Optimal care of the higher risk surgical patient. 2000 October

130. Gan TJ. Intraoperative fluid management and choice of fluids. 2000

132. Grocott MPW, Gan TJ., Hemodynamic "Optimization" Goal Is Improved Outcome. APSF Newsletter 2001; 16(2):31-33

133. Grocott MPW, Gan TJ. Hemodynamic "Optimization" Goal Is Improved Outcome. 2000

149. Marik PE. Pulmonary artery catheterization and esophageal Doppler monitoring in the ICU. *Chest* 1999; 116:1085-1091

156. Matthews PC. Cardiac output measurement using the TECO 1 oesophageal Doppler monitor. A comparison with thermodilution. *International Journal of Intensive Care* 1998 Autumn

191. Kincaid EH, Fly MG, Chang MC. Noninvasive measurements of preload using esophageal Doppler are superior to pressure-based estimates in critically injured patients.